## Human organoid-on-a-chip model for therapeutic development in ARPKD

<u>Navin Gupta M.D.</u><sup>1,2,3</sup>; Ken Hiratsuka M.D./Ph.D.<sup>1,2,4</sup>; Tomoya Miyoshi Ph.D.<sup>2</sup>; Katharina T. Kroll Ph.D. candidate<sup>4</sup>; M.Todd Valerius Ph.D.<sup>2,3</sup>; Thomas Ferrante Ph.D. <sup>4</sup>; Michifumi Yamashita M.D./Ph.D.<sup>5</sup>; Jennifer A. Lewis Ph.D.<sup>3,4</sup>; and Ryuji Morizane M.D./Ph.D.<sup>1,2,3,4</sup>

**Introduction**: Stem cell-derived kidney organoids recapitulate organ-specific 3D architecture to permit human disease modeling *in vitro*, yet challenges remain in replicating native organ physiology. ARPKD has high neonatal mortality due to hepatorenal dysfunction and lacks FDA-approved treatments. Combining ARPKD organoids with organ-on-a-chip technology may provide a dynamic microenvironment that simulates disease-specific phenotypes, overcoming limitations of static models to uncover therapeutic targets.

**Methods:** Kidney organoids were made from H9 ES cells, H9-derived *PKHD1* CRISPR mutants, and ARPKD iPSCs. Day 14 organoids were placed onto a 3D-printed millifluidic chip and cultured under flow. Transcriptomics were evaluated by 3D microarray. siRNA targeting siKIF3A was transfected to knock-down cilia. Fluorescent lipid tension reporter (FliptR) was used for FLIM imaging. Kidney sections from four ARPKD patients were assessed by immunohistochemistry.

**Results**: *PKHD1*<sup>-/-</sup> organoids-on-chip developed physiologic distal cysts in response to fluid flow, unlike *PKHD1*<sup>+/-</sup>. Microarray demonstrated maturation under flow with 168 GO terms of mechanosensing such as membrane tension, actin cytoskeleton, and cell adhesion. Organoids with knocked-down primary cilia had reduced tubular diameter and proliferation. Tubular membranes stained with FliptR demonstrated longer lifetimes under flow, signifying higher membrane tension. Time-lapse live-imaging of organoids perfused with fluorescent low molecular weight dextran displayed sequential signals in glomeruli then tubular lumens. Comparative gene expression between *PKHD1*<sup>-/-</sup> and *PKHD1*<sup>-/-</sup> organoids in response to flow, forskolin, and under static culture permitted the identification of 229 flow-specific signals, and targeted compound screening demonstrated therapeutic effects of RAC1 or FOS inhibition by clinically tested drugs. ARPKD patient samples and *PKHD1*<sup>-/-</sup> organoids confirmed RAC1 and FOS positivity in cystic epithelia, with FOS demonstrating specificity for distal nephrons.

**Conclusions**: Modeling ARPKD with kidney organoids-on-chip demonstrates that flow recapitulates the segment-specificity of cystogenesis seen in afflicted patients. Cyst formation was ameliorated with RAC or FOS inhibition, that might be targeted for therapeutic development.

Funding Sources: NIH DP2EB029388 award (RM), NIH UH3TR002155 grant (M.T.V., J.A.L., R.M.)

<sup>&</sup>lt;sup>1</sup>Nephrology Division, Massachusetts General Hospital, Harvard Medical School; Boston MA USA

<sup>&</sup>lt;sup>2</sup>Division of Renal Medicine, Brigham and Women's Hospital; Boston MA USA

<sup>&</sup>lt;sup>3</sup>Harvard Stem Cell Institute (HSCI); Cambridge MA USA

<sup>&</sup>lt;sup>4</sup>Wyss Institute for Biologically Inspired Engineering, Harvard University; Boston MA USA

<sup>&</sup>lt;sup>5</sup>Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center; Los Angeles CA USA