

What Can Go Wrong?

Artificial Intelligence in Biomedical and Behavioral Research

Dr. Tina Hernandez-Boussard, Ph.D., MPH, FACMI

Associate Dean of Research Professor of Medicine, Biomedical Data Science, Surgery, Epidemiology & Population Health

Promise of Data-Driven Medicine

Transformative potential in diagnosis, treatment, and outcomes.

Can help decision-making be faster and more accurate.

Generative Al is the new frontier with many possibilities

Double-Edged Sword

AI APPLICATIONS IN HEALTHCARE

BIOMEDICAL RESEARCH

- Automated experiments
- Automated data collection
- Gene function annotation
- Literature mining

TRANSLATIONAL RESEARCH

- Biomarker discovery
- Drug-target prioritization
- Genetic variant annotation

MEDICAL PRACTICE

- Disease diagnosis
- Treatment selection
- Patient monitoring
- Risk stratification models

When AI in Healthcare Goes Wrong

Bias in Algorithmic Decision Making

Obermeyer Science 2019 – Allocation of resources based on cost not need

Privacy Breaches and Data Misuse

- Hospital Data Breaches
- Unauthorized Data Sharing

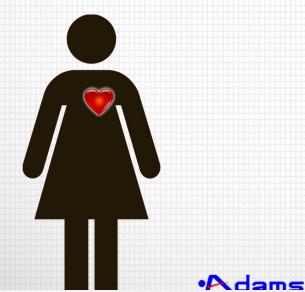
■ Faulty or Inaccurate Medical Devices and Software

- Pulse Oximeter and skin pigmentation bias
- Overreliance on Technology
 - Art of Medicine

Where Al can Go Wrong

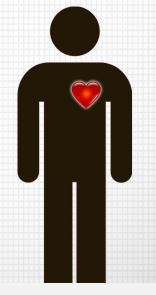
HEART ATTACK SYMPTOMS FOR:

- Dizziness or nausea
- Unexplained weakness
- Recurring chest discomfort
- Sense of impending doom
- Discomfort or pain between the shoulder blades



HEART ATTACK SYMPTOMS FOR:

- Standard chest pain and a squeezing sensation that may come and go
- Rapid heartbeat
- Stomach discomfort
- Shortness of breath
- Dizziness
- Breaking out in a cold sweat



Predicting COVID-19 Outcomes

- COVID-19 presents a disproportionate impact on minorities
 - Economic and social circumstances
 - Existing health disparities

Röösli E, Rice B, Hernandez-Boussard T. J Am Med Inform Assoc. 2

Ethical and Societal Implications of AI in Healthcare

Public Trust and Perception

- Growing concerns about data privacy and security
- Lack of standards to communicate data use and re -use

Healthcare Commercialization

- Commercial use of health data by technology companies
- Ethical concerns over profit motives overriding patient welfare.

Regulatory and Legal Landscape

- Evolving legal frameworks to address novel challenges
- Limited policies to protect individuals and ensure equitable Al

Cultural and Ethical Norms

- Social Determinants of Health in health data and data -driven healthcare.
- Balance technological innovation with ethical considerations and societal values.

Inequities in Healthcare Access and Outcomes: Digital Divide

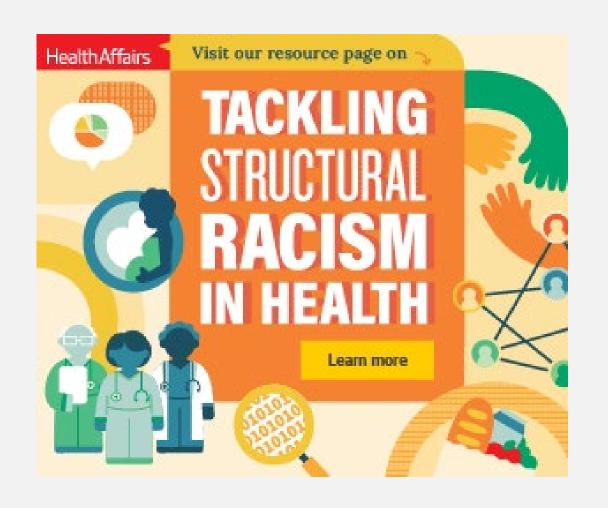
- Risk of widening health inequalities due to uneven distribution of technology in health
- Community health centers, rural health settings, certain patient groups

Real world examples of societal harm caused by AI in healthcare

Race-Based Medicine

Medical practice guided by algorithms that include race and/or ethnicity

- Race as a proxy for biological differences
- Race fails to account for other factors associated with health outcomes
- Reinforces stereotypes



Race-Based Medicine Examples

Kidney Disease -eGFR

- eGFR (estimated glomerular filtration rate) used to diagnose & monitor kidney disease adjusted for race
 - Assumed Black patients had inherently higher creatinine levels.

Vaginal Births after Cesarean

- Vaginal Birth after Cesarean (VBAC)
 Calculator estimates risk of an adverse outcome with vaginal birth after a cesarean adjusted for race
 - Assumed Black patients were at higher

Race is a social construct with greater variation within race than between races

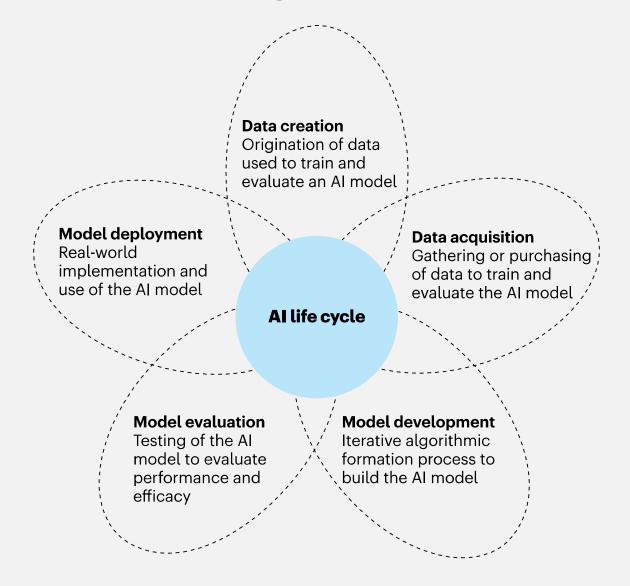
diagnosed later with more severe disease

 reduced chances of being placed on kidney transplant waitlists

- VBAC overestimated risk of adverse events, particularly among Black women
 - Differential recommendations
 - Limited treatment options

How do we develop Fair and Reliable Models?

Life Cycle of the Artificial Intelligence



Transparency at Every Stage

- Question formation
 - Stakeholder involvement
- Data Creation
 - How data were produced
 - Circumstances of data generation
 - Data quality
 - Data diversity
- Data Acquisition
 - Data availability
 - Legal & Regulatory mandates
 - Internal Review Boards
 - Financial agreements

- Model Development
 - Ground truth
 - Training data
 - Hyper-tuning
- Model Evaluation
 - Beyond performance
 - Parity & Calibration
 - De-biasing steps
- Deployment
 - Technical barriers
 - Integration issues
 - Organizational/technical challenges
 - Regulatory compliance

Fairness Framework to Evaluate AI

scientific data

Explore content v About the journal v Publish with us v

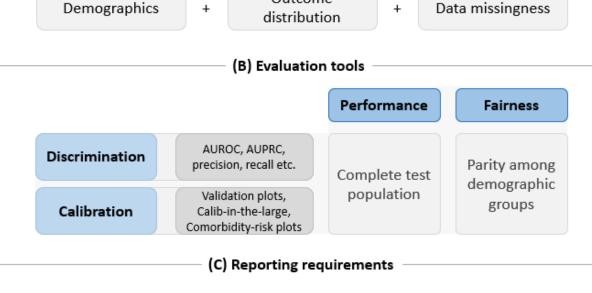
nature > scientific data > articles > article

Article | Open Access | Published: 24 January 2022

Peeking into a black box, the fairness and generalizability of a MIMIC-III benchmarking model

Eliane Röösli, Selen Bozkurt & Tina Hernandez-Boussard

Three-stage analytical setting Internal validation External validation Three-stage analytical setting Internal validation A (A) Descriptive cohort analyses Outcome

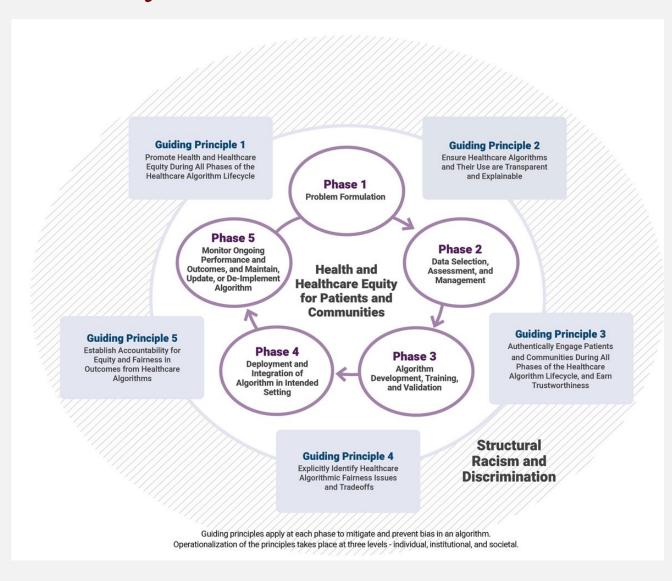


Class imbalance

Model evaluation

MINIMAR

Life Cycle of the Data-Driven Tools



Guiding Principles

- Promote Health and Healthcare Equity During All Phases of the Healthcare Algorithm Lifecycle
- Ensure Healthcare Algorithms and their Use are Transparent and Explainable
- Authentically Engage Patients and Communities During All Phases of the Healthcare Algorithm Lifecycle, and Earn Trustworthiness
- Explicitly Identify Healthcare Algorithmic Fairness Issues and Tradeoffs
- Ensure Accountability for Equity and Fairness in Outcomes from Healthcare Algorithms

Transparency Cycle

- Data Availability and Model Accuracy
 - Who does the model represent?
 - How does the model perform across populations
- Al bias can be prejudice and results in differential treatments and outcomes

- Impacts communities & erodes trust
 - Crucial implications related to data sharing and patient engagement
- Reduced Engagement
 - Communities reluctant to share their data, perpetuating the cycle of inaccuracy and mistrust.

Catch 22 for AI Equity

Lack of Transparency

Limited training data and suboptimal model performance

Erosion of trust within communities

Disparities in Outcomes

Prejudice or inaccurate model performance

NO Engagement & Participation

Reluctance to share data

boussard-lab.stanford.html

boussard@stanford.edu

