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Promise of Data-Driven Medicine

m [ransformative potential in
diagnosis, treatment, and
outcomes.

m Can help decision-making be
faster and more accurate.

m Generative Al is the new frontier
with many pOSSibili’[ieS Doub 16 _Edged Sword
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Al APPLICATIONS IN HEALTHCARE
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BIOMEDICAL
RESEARCH

Automated experiments
Automated data collection
Gene function annotation

Literature mining

TRANSLATIONAL
RESEARCH

Biomarker discovery
Drug—target prioritization

(Genetic variant annotation
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MEDICAL
PRACTICE

Disease diagnosis
Treatment selection
Patient monitoring

Risk stratification models



When Al m Healthcare Goes Wrong

m Bias in Algorithmic Decision Making
Obermeyer Science 2019 — Allocation of resources based on cost not need

m Privacy Breaches and Data Misuse
— Hospital Data Breaches
— Unauthorized Data Sharing

m Faulty or Inaccurate Medical Devices and Software
— Pulse Oximeter and skin pigmentation bias

m Overreliance on Technology
— Art of Medicine



Where Alcan Go Wrong

HEART ATTACK SYMPTOMS FOR: HEART ATTACK SYMPTOMS FOR:
* Dizziness or nausea * Standard chest pain and a
* Unexplained weakness squeezing sensation that
* Recurring chest discomfort may come and go
* Sense of impending doom * Rapid heartbeat
* Discomfort or pain between the * Stomach discomfort

shoulder blades * Shortness of breath

* Dizziness

* Breaking out in a cold sweat
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Predicting COVID-19 Outcomes

m COVID-19 presents a disproportionate impact on minorities
— Economic and social circumstances
— Existing health disparities

Is artificial intelligence worsening COVID-

—

19's toll on Black Americans? A

-
Experts are asking if biased algorithms

exacerbate health disparities

e Rod McCullom
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Bias at Warp Speed: How Al may Contribute to the Dispg] 3?
Roosli E, Rice B, Hernandez-Boussard T. J Am Med Inform Assoc
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Ethical and Societal Implications of Al n Healthcare

Public Trust and Perception
— Growing concerns about data privacy and security
— Lack of standards to communicate data use and re -use

Healthcare Commercialization
— Commercial use of health data by technology companies
— Ethical concerns over profit motives overriding patient welfare.

Regulatory and Legal Landscape
— Evolving legal frameworks to address novel challenges
— Limited policies to protect individuals and ensure equitable Al

Cultural and Ethical Norms
— Social Determinants of Health in health data and data -driven healthcare.
— Balance technological innovation with ethical considerations and societal values.

Inequities in Healthcare Access and Outcomes: Digital Divide
— Risk of widening health inequalities due to uneven distribution of technology in health
— Community health centers, rural health settings, certain patient groups



Real world examples of
societal harm caused by
Al mn healthcare




Hernandez-Boussard T, Siddique SM, Bierman AS, Hightower M, Burstin H. Promoting Equity In Clinical

Race-Based Medicine

Medical practice guided by ACLULLIg  Visicour resource pageon

algorithms that include race = ] TACKLING
STRUCTURAL

and/or ethnicity
—Race as a proxy for biological
differences ‘ HACISM
—Race fails to account for other |N HEALTH

factors associated with health
outcomes

— Reinforces stereotypes

Decision Making: Dismantling Race-Based Medicine. Health Aff (Millwood). 2023 Oct;42(10):1369-1373.



Race-Based Medicme Examples

Kidney Disease -eGFR Vaginal Births after Cesarean

m eGFR (estimated glomerular filtration =~ = Vaginal Birth after Cesarean (VBAC)
rate) used to diagnose & monitor Calculator estimates risk of an
Kidney disease adjusted for race adverse outcome with vaginal birth
— Assumed Black patients had inherently after a cesarean aqgjusted for race

higher creatinine levels. — Assumed Black patients were at higher
Race is a social construct with greater variation within race than between races

diagnosed later with more severe

disease m VBAC overestimated risk of adverse
— reduced chances of being placed on events, particularly among Black
kKidney transplant waitlists women

— Differential recommendations
— Limited treatment options

Stanford
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How do we develop Fair and
Reliable Models?
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Life Cycle ofthe Artificial Intelligence

—————

Data creation
Origination of data
used to train and
evaluate an Al model
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/ Model deployment Data acquisition

:‘ Real-world - /' Gathering or purchasing

» implementation and ) *  of data to train and .

\_use of the Al model evaluate the Al model
.-~~~ Allifecycle -

/ \

/" Model evaluation ‘. Model development *

! Testing of the Al \/ Iterative algorithmic
/' model to evaluate /. formation processto
.' performance and . build the Al model \
+ efficacy ‘ B i

Ng MY, Kapur S, Blizinsky KD, Hernandez-Boussard T. The Al life cycle: a holistic approach to
creating ethical Al for health decisions. Nat Med. 2022 Nov;28(11):2247-2249.
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Transparency at Every Stage

m Question formation
— Stakeholder involvement

m Data Creation
— How data were produced
— Circumstances of data generation
— Data quality
— Data diversity

m Data Acquisition
— Data availability
— Legal & Regulatory mandates
— Internal Review Boards
— Financial agreements

m Model Development
— Ground truth
— Training data
— Hyper-tuning

m Model Evaluation

— Beyond performance
— Parity & Calibration
— De-biasing steps

m Deployment
— Technical barriers
— Integration issues

— Organizational/technical challenges

— Regulatory compliance



Fairness

Framework to
Evaluate Al

scientific data

Explore content v About the journal ¥ Publish with us v

nature » scientific data » articles > article

Article | Open Access | Published: 24 January 2022

Peeking into a black box, the fairness and
generalizability of a MIMIC-IIl benchmarking
model

Eliane Ro66sli, Selen Bozkurt & Tina Hernandez-Boussard £

The Fairness and Generalizability Assessment Framework

Three-stage analytical setting
2 3

Internal validation
after retraining

\ 4 $ $

(A) Descriptive cohort analyses

Internal validation External validation

Demographics + QUizez iz + Data missingness
grap distribution 8

(B) Evaluation tools

(pertormance | [ raimess |

P AUROC, AUPRC,
Discrimination . ;
precision, recall etc. Parity among
Complete test .
: demographic
Validation plots, population
Calibration Calib-in-the-large, groups
Comorbidity-risk plots
(C) Reporting requirements
MINIMAR + Class imbalance + Model evaluation




Life Cycle ofthe Data-Driven Tools

Guiding Principle 1
Promote Health and Healthcare
Equity During All Phases of the
Healthcare Algorithm Lifecycle

Guiding Principle 2
Ensure Healthcare Algorithms
and Their Use are Transparent

and Explainable

Phase 1

Problem Formulation |

» Phase5

Monitor Ongoing Phase 2
Performanceand | Data Selection,
\ gu‘t(;:mes,;ngl M%;Imal:‘i J Health and \ Assessment, and
""a-.:__,_ e, J:’I:_;ufilhmmp emel Healthcare Equity Management
) for Patients and

Communities

Guiding Principle 3
Authentically Engage Patients
and Communities During All
Phases of the Healthcare
Algorithm Lifecycle, and Earn
Trustworthiness

Guiding Principle 5
Establish Accountability for
Equity and Fairness in
Outcomes from Healthcare
Algorithms

et =
Ir!tegra.liun of J _ 1 Develnﬁgi:tt,h 1'::ain'|ng, I
Mg"r“hs":t't'i’ng“ended \,  andValidation

TR Structural
uiding Principle .

Explicitly Identify Healthecare _Rac_lsm an_d
Algorithmic Faimess Issues Discrimination

and Tradeoffs

Guiding principles apply at each phase to mitigate and prevent bias in an algorithm.
Operationalization of the principles takes place at three levels - individual, institutional, and societal.

M Chin, et al. 2023, JAMA Network Open

Guiding Principles

m Promote Health and Healthcare Equity During Al
Phases of the Healthcare Algorithm Lifecycle

m Ensure Healthcare Algorithms and their Use are
Transparent and Explainable

m Authentically Engage Patients and Communities
During All Phases of the Healthcare Algorithm
Lifecycle, and Earn Trustworthiness

m Explicitly I[dentify Healthcare Algorithmic Fairness
Issues and Tradeoffs

m Ensure Accountability for Equity and Fairness in
Outcomes from Healthcare Algorithms



Transparency Cycle

m Data Avallability and Model
Accuracy
—Who does the model represent?

— How does the model perform
across populations

m Al bias can be prejudice and
results in differential
treatments and outcomes

m Impacts communities &

erodes trust

— Crucial implications related to

data sharing and patient
engagement

m Reduced Engagement

— Communities reluctant to share

their data, perpetuating the cycle

of inaccuracy and mistrust.



Catch 22 for Al Equity

Lack of Transparency Breaks trust

Limited training data and suboptimal
model performance

T

Erosion of trust within communities

Disparities in Outcomes

Prejudice or inaccurate model Reluctance to share data

performance dwm




boussard-lab.stanford.html

VA@A boussard@stanford.edu
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