
Introduction to R & RStudio
New Approach Methods (NAMs) Tools Training Workshop

2024-04-24

Intro to R

This document is written in R markdown, a type of file that allows you to combine code with commentary.
You can create a new Rmarkdown file by going to File -> New File -> R markdown. The code written here
can also be written and run in an R script (File -> New File -> R script) or in your consol.

R Packages

In R, shareable bundles of code, data, and documentation are called packages. Many functions are available
in base R, but often times you will need to install a package to access something specific. Many packages are
available on Comprehensive R Archive Network, or CRAN, the public clearing house for R packages. Other
packages may not be available on CRAN, but able to be downloaded from Github.

Installing packages

The most common method is to install a package from CRAN. You can also do this by going to the bottom
right screen, find the “Packages” tab, click the “install” button, and search for your package.

install.packages("httk")

You can install a package from a repository such as GitHub. First, you must install devtools with the
usual “install.packages(”devtools”)“; you may also need to install Rtools if using Windows. Once devtools
is installed, you can install other packages:

install_git() from a git repository,
install_github() from GitHub,
install_bitbucket() from Bitbucket,
install_version() from a specific version of a CRAN package

For example, to install “httk” from Github, use the user/rep form.

devtools::install_github("USEPA/CompTox-ExpoCast-httk")

Note: If you do not want to install devtools, you can bypass it by using the “remotes” package (first use
“install.packages(”remotes”)“)

remotes::install_github("USEPA/CompTox-ExpoCast-httk")

1

If you need to install a package stored in another external repository (neither CRAN nor Github), use the
following parameters in your install.packages command:

install.packages('furrr', repos='http://cran.us.r-project.org', dependencies=TRUE)

If you have an R package downloaded on your local machine as a .zip or tar.gz file, you can install it using
the install.packages() function and specify the path where the zip file is saved

install.packages('C:/Users/User/Downloads/abc_2.1.zip', repos=NULL, type='source')

Dependencies

Dependencies are automatically installed from CRAN. Outdated dependencies are automatically upgraded
by default. If you are downloading a package from GitHub, check the page for listed dependencies. If
you are missing dependencies for the package you are trying to install, an error message will list which
dependencies to install first. Older versions of packages/dependencies can be found by going to https:
//cran.r-project.org/web/packages, searching for your package, and clicking on “Old sources”.

check necessary dependencies for installed packages
pack <- available.packages()
pack["doParallel","Depends"]

Loading Packages

Once you have your package installed (which only needs to happen once), you can load it into your library.
You must do this with every new R session.

library("httk")

Warning: package ’httk’ was built under R version 4.3.2

Now you can get help with the package or check its version. You can also get help by going to the bottom
right window and click the “Help” tab.

??httk
packageVersion("httk")

Create a document or script

To create a new script, go to File -> New File -> R script. This opens a blank script. You can write your
code in this document and it will save as a .R file. Make sure you save it in the appropriate directory on
your computer (perhaps the same directory where you have data saved). If you want to run this script from
a separate .R file, you use the “source” function. To ensure you are in the correct working directory, you can
navigate to it using the Files tab in the bottom right pane, go to Session -> Set Working Directory -> To
Files Pane Location. You can also choose Session -> Set Working Directory -> Choose Directory.

source("path/your_script.R")

2

https://cran.r-project.org/web/packages
https://cran.r-project.org/web/packages

Base R Commands

Note: Commands can be run using ctrl + enter or the green “Run” button above.

Variables are containers for storing data values and can be assigned using “=” or “<-”. A variable be of
different data types For example, variables can be numeric, characters (a.k.a strings), or boolean. Note that
strings must be enclosed in quotations.

name = "John Doe"
person.name <- "John Doe"

age = 45

is.open = TRUE

You can find the class of the variables to tell you if it’s a string, numeric, etc.

class(name)

[1] "character"

class(age)

[1] "numeric"

class(is.open)

[1] "logical"

Base R has a range of built-in functions.

Create vectors
y = c(10.1, 3, 1, 2.3, 1.2)

built-in functions
max(y)

[1] 10.1

min(y)

[1] 1

range(y)

[1] 1.0 10.1

3

tail(y,1)

[1] 1.2

length(y)

[1] 5

mean(y)

[1] 3.52

sd(y)

[1] 3.767891

runif(n=5, min = 1, max = 10) # runif randomly selects n numbers from a uniform distribution

[1] 7.387547 9.842005 1.362561 3.481153 1.540182

let's create a hypothetical x-vector to match y
x = seq(1,5,by=1)

Create a matrix or dataframe.

combine the vectors into a matrix or dataframe
mat = cbind(x,y)
rename columns
colnames(mat) = c("time","concentration")

df = data.frame(time = x, concentration = y)
df = data.frame(mat)

extract elements from the matrix/df using matrix[row, column]
mat[1,2]

concentration
10.1

if the structure is a dataframe, you can use the "$" symbol
df$concentration

[1] 10.1 3.0 1.0 2.3 1.2

df$concentration[1] # extracts first element of "concentration"

[1] 10.1

Let’s consider an actual dataset. R has preloaded data. Notice that R’s preloaded data also includes httk’s
datasets.

4

Example: look at the "iris" data set
data()
data("iris")
head("iris")

If you have not done so already, install and load the httk package
library("httk")

Look at one of httk’s data sets chem.physical_and_invitro.data. This data set contains information about
many chemicals; each row pertains to a single chemical.

Show the top few rows
head(chem.physical_and_invitro.data)

Find the names of the columns
colnames(chem.physical_and_invitro.data)

[1] "Compound" "CAS"
[3] "CAS.Checksum" "DTXSID"
[5] "Formula" "All.Compound.Names"
[7] "logHenry" "logHenry.Reference"
[9] "logMA" "logMA.Reference"
[11] "logP" "logP.Reference"
[13] "logPwa" "logPwa.Reference"
[15] "logWSol" "logWSol.Reference"
[17] "MP" "MP.Reference"
[19] "MW" "MW.Reference"
[21] "pKa_Accept" "pKa_Accept.Reference"
[23] "pKa_Donor" "pKa_Donor.Reference"
[25] "All.Species" "Dog.Foral"
[27] "Dog.Foral.Reference" "DTXSID.Reference"
[29] "Formula.Reference" "Human.Caco2.Pab"
[31] "Human.Caco2.Pab.Reference" "Human.Clint"
[33] "Human.Clint.pValue" "Human.Clint.pValue.Reference"
[35] "Human.Clint.Reference" "Human.Fabs"
[37] "Human.Fabs.Reference" "Human.Fgut"
[39] "Human.Fgut.Reference" "Human.Fhep"
[41] "Human.Fhep.Reference" "Human.Foral"
[43] "Human.Foral.Reference" "Human.Funbound.plasma"
[45] "Human.Funbound.plasma.Reference" "Human.Rblood2plasma"
[47] "Human.Rblood2plasma.Reference" "Monkey.Foral"
[49] "Monkey.Foral.Reference" "Mouse.Foral"
[51] "Mouse.Foral.Reference" "Mouse.Funbound.plasma"
[53] "Mouse.Funbound.plasma.Reference" "Rabbit.Funbound.plasma"
[55] "Rabbit.Funbound.plasma.Reference" "Rat.Clint"
[57] "Rat.Clint.pValue" "Rat.Clint.pValue.Reference"
[59] "Rat.Clint.Reference" "Rat.Foral"
[61] "Rat.Foral.Reference" "Rat.Funbound.plasma"
[63] "Rat.Funbound.plasma.Reference" "Rat.Rblood2plasma"
[65] "Rat.Rblood2plasma.Reference" "SMILES.desalt.Reference"
[67] "Chemical.Class"

5

Find the size
dim(chem.physical_and_invitro.data)

[1] 11232 67

You can extract information about a certain chemical using functions such as which() and subset(). Consider
a chemical of interest, Chloroform.

which() finds the row number. You can save that row number to a variable named "our.row" (or any other variable name you choose).
our.row = which(chem.physical_and_invitro.data$Compound=="Chloroform")
A = chem.physical_and_invitro.data[our.row,] # we can save this subset into our environment
chem.physical_and_invitro.data[our.row, c("logP","MW")]

logP MW
67-66-3 1.97 119.4

or
A[, c("logP","MW")] # gives the same result

logP MW
67-66-3 1.97 119.4

subset() allows you to subset columns by row (B returns the same result as A)
B = subset(chem.physical_and_invitro.data, Compound=="Chloroform")

Subset dataframe by multiple conditions.

Find all chemicals for which either 2.5 < logP < 3 or logP > 5
special.subset = subset(chem.physical_and_invitro.data, logP > 2.5 & logP < 3 | logP > 5)

Refine your search further. Say you want to see if any of these chemicals have
intrinsic clearance values for Rats.
First, notice how many NA values there are
special.subset = subset(chem.physical_and_invitro.data, logP > 2.5 & logP < 3 | logP > 5)$Rat.Clint

Filter out NA values: is.na(x) finds values that are NA; ! negates
new_df = subset(chem.physical_and_invitro.data, (logP > 2.5 & logP < 3 | logP > 5) & !(is.na(Rat.Clint)))

You can find unique values when a table or dataframe may be large or have repeated values. For example,
what unique species are in this table?

unique(chem.physical_and_invitro.data$All.Species)

[1] "Human" "Human|Rat"
[3] "Human|Rat|Dog|Monkey" "Human|Dog"
[5] "Human|Monkey" "Human|Rat|Dog"
[7] "Human|Mouse|Rat|Dog" "Human|Rat|Mouse|Dog|Monkey"
[9] "Human|Rat|Mouse" "Human|Rat|Monkey"
[11] "Human|Rabbit|Dog" "Rat|Human"
[13] "Rat" "Rabbit|Human"

6

[15] "Rat|Human|Mouse|Dog" "Rat|Human|Dog"
[17] "Mouse|Rat|Human" "Human|Mouse|Rat|Dog|Monkey"
[19] "Human|Mouse|Rat" "Human|Rat|Mouse|Dog"
[21] "Human|Mouse" "None"
[23] "Rat|Human|Mouse|Monkey" "Human|Dog|Monkey"
[25] "Human|Mouse|Dog|Monkey"

Plotting in R

There are many ways to visualize data in R (ggplot2 is a very versatile package), but you can also easily
plot in base R. Within base R plotting functions, specifications can be added (such as color). Below is an
example of a histogram of the logHenry values from new_df.

histogram of the logP values from new_df dataframe (above)
hist(new_df$logHenry,

main = "Histogram of LogHenry", # title
xlab = "logHenry", # x-axis label
breaks = 20, # change number of breaks
col = "lightblue", # color of bars
border = "darkblue", # border color
prob = TRUE) # shows density instead of frequencies

lines() overlays a new line onto existing plot
lines(density(new_df$logHenry), # density() shows density curve

lwd = 2, # set line width
col = "maroon")

Histogram of LogHenry

logHenry

D
en

si
ty

−10 −5 0

0.
00

0.
05

0.
10

0.
15

7

You can also use the plot() function to plot numeric data. Plot logPwa (water:air partition coefficent) vs
logHenry from chem.physical_and_invitro.data.

plot(chem.physical_and_invitro.data$logPwa, chem.physical_and_invitro.data$logHenry,
xlab = "logPwa",
ylab = "logHenry",
pch = 6, # choose shape
col = "#6600cc", # color of the shape
cex = 0.5) # shape size

−5 0 5 10 15

−
15

−
10

−
5

0

logPwa

lo
gH

en
ry

Bonus material

We can perform a linear regression on the data from the plot above using the lm() function.

lm(logHenry~logPwa, data = chem.physical_and_invitro.data)

##
Call:
lm(formula = logHenry ~ logPwa, data = chem.physical_and_invitro.data)
##
Coefficients:
(Intercept) logPwa
-2.8721 -0.7485

8

To add the regression line to the plot, use abline()

plot(chem.physical_and_invitro.data$logPwa, chem.physical_and_invitro.data$logHenry,
xlab = "logPwa",
ylab = "logHenry",
pch = 6, # choose shape
col = "#6600cc", # color of the shape
cex = 0.5) # shape size

abline(lm(logHenry~logPwa, data = chem.physical_and_invitro.data),
lwd = 3,
col = "red",
lty = 2)

add a legend
legend("topright", # location of legend

legend = c("values","regression"), # text of legend
pch = c(6, NA), # symbols
col = c("#6600cc","red"), # color per symbol
lty = c(NA, 2), # linetype
lwd = c(NA,3)) # linewidth

−5 0 5 10 15

−
15

−
10

−
5

0

logPwa

lo
gH

en
ry

values
regression

9

	Intro to R
	R Packages
	Installing packages
	Dependencies
	Loading Packages

	Create a document or script
	Base R Commands
	Plotting in R
	Bonus material

